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Abstract—Crowd counting and mobility tracking supply valu-
able insights into public safety, event organization, and urban
planning, in a time when the COVID-19 pandemic renders the
demand for a reliable and privacy-preserving crowd tracking sys-
tem more exigent. Existing models struggle to capture long-range
context dependency, notwithstanding a shorter forecast horizon
and lower accuracy. In this paper, we develop a scalable Internet-
of-Things sensor network that receives IEEE 802.11n Wi-Fi probe
requests, a proven indicator of crowd activity. We then propose
a data processing framework based on Google’s Transformer
architecture with multi-headed attention to generate forecasts
on upcoming mobility patterns, utilizing one hot encoding and
embedding layers to better express periodicity in our model.
Conducting comprehensive experiments using self-collected and
public data sets, our model supports a large forecast horizon and
outperforms existing LSTM variants by a wide margin.

Keywords: crowd counting, mobility, IoT sensor, Wi-Fi
probe request, deep learning, time series forecasting, trans-
former, multi-headed attention

I. INTRODUCTION

Overcrowding is a prevalent issue in a modern-day society
where populations are highly concentrated – busy streets of
urban areas, college campuses, shopping malls – presenting
serious challenges in management and planning to administra-
tors, and, in the meantime, compromising the convenience and
safety of people traveling in or occupying such spaces. A well-
designed crowd counting and mobility tracking system allevi-
ates this pressure and provides insights on an administrative
level, which could benefit public safety, event organization,
urban planning, etc.

In light of the COVID-19 pandemic, the demand for a
reliable crowd counting system has come into prominence
when coincided with social distancing protocols that diminish
the capacity of many public spaces and creates uncertainty
in pedestrian traffic, businesses and schools struggle in their
reopening and disease control efforts. Accurate forecasting of
crowd mobility bears even more significance as administrators
can take preventive measures to limit, divert, or redirect
upcoming traffic flows.

Conventionally, crowd counting is achieved through video
cameras and image recognition a methodology with inherent
shortcomings, which is the case demonstrated in Figure 1.
However, many would resent deploying security cameras on
a large scale as they undermine personal privacy, and the
limited range indoors mandates that more cameras are installed
to cover a specific area. Environmental conditions such as
low-light and, for outdoor usage, unexpected weather all
impact the performance and accuracy of vision-based systems.

Fig. 1: Crowd counting with CNN (Convoluted Neural Net-
work) [1]

Image recognition and the computing resource thereof needed,
combined with expensive video cameras, portray it as a costly
and unsuitable solution for many use cases.

The challenge remains for constructing a reliable crowd
counting system as several factors could potentially undermine
the usability of such systems developed, including accuracy,
coverage, cost, and privacy preservation. Whereas researchers
have explored thoroughly video cameras and image recogni-
tion (e.g. [21], [11], [12], [1]), fewer have explored utilizing
radio signals to determine crowd density.

The widespread and amplitude of commodity Wi-Fi devices
elevates the usefulness of Wi-Fi traffic to a new level. With
few exceptions where mobile devices are prohibited, almost all
pedestrians now carry IEEE 802.11n Wi-Fi-capable devices
such as their smartphones and tablets. Devices broadcasts
probe requests to gather information on available access points
nearby [5]. Probe requests could serve as an indicative metric
of crowd activity at a given location.

Wi-Fi-based crowd counting addresses the limitations of
vision-based systems, as the typical coverage ranges from
20 to 50 meters [14]. Wi-Fi bases systems can efficiently
determine individuals’ presence through counting the MAC
(media access control) addresses embedded in the probe
request. To address the population without smartphones, the
count can simply be extrapolated by a scalar to fit the actual
circumstance. The sensors cost less to manufacture and operate
in all weather and lighting conditions.

Crowd monitoring alone could render little assistance with-
out a robust forecasting system that can inform adminis-
trators of upcoming dynamics. Previously, researchers have
experimented with RNNs (Recurrent Neural Networks) [18],
[13]. However, these models have inherent drawbacks – they
struggle to capture long-range context dependencies, encounter
issues like gradient vanishing and explosion while training,
and are unable to process input in parallel, areas in which the
Transformer shines.

The counter these aforementioned shortcomings and prob-
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lems, we propose an interconnected network of sensors, built
upon the Raspberry Pi platform. To approximate the crowd
size and yield meaningful data, sensors need to be non-
intrusive yet highly precise. We then develop an API server
that supports distributed computing to collect and process in-
put data from the sensors. Finally, we construct a model based
on Google’s Transformer architecture, outlined in Attention is
All You Need [16]. First, we test the model on data sets self-
collected on the campus of Phillips Exeter Academy, and then
compare our model with existing LSTM based models using
a publicly available data set. We study the results of these
experiments and demonstrate the efficacy of the model.

The main contributions of our work can be summarized as:
1) We design a scaleable and affordable IoT sensor network

especially fit for usages on campuses and urban areas;
2) We propose a server framework that efficiently processes

millions of input from the sensor network;
3) The Transformer-based model we constructed yields

higher accuracy and better performance than existing
LSTM models.

The following sections are organized as such: Section II
examines the previous work in the two fields of interest –
crowd counting methodologies and time series forecasting with
machine learning, Section III details our design of different
part of the system, Section V puts the system to test in real-
world settings and examines the results in detail, Section VI
concludes the paper and discusses prospective studies that can
be conducted in this direction.

II. RELATED WORKS

A. Crowd Counting

1) Vision-Based Crowd Counting
Driven by big data and machine learning, a variety of crowd

counting techniques have drawn attention from researchers
and industry practitioners. Researchers have long delved into
the possibility of using camera vision to calculate crowd
counts, and while many techniques rely on face recognition of
individuals and aggregating that result [14], Mikel Rodriguez
et al. was among the first to propose associate density in-
formation with individual positions in the image [9]. Lokesh
Boominathan, Srinivas S S Kruthiventi, and R. Venkatesh
Babu employed a combination of deep and shallow CNN to
capture body and facial features in combination with low-
level features of blobs and clusters [1]. Although this research
betters the performance of the image recognition model, other
weaknesses of this method have yet to be challenged.

2) Wi-Fi Based Crowd Counting
As researchers explore other methodologies in crowd count-

ing, Wei Xi et al. were among the first to investigate 802.11n
Wi-Fi CSI (channel state information) by the rationale that CSI
is highly sensitive to disruptions in the environment [20]. The
investigation was furthered by Simone Di Domenico et al.,
who analyzed the shape of the Doppler spectrum. Han Zou
et al. optimized this approach by selecting the most represen-
tative feature of CSI and applying a kernel transfer learning
kernel learning to adjust for the environmental and temporal
discrepancies [22]. However, two sensors are required to be

placed on two opposite ends to capture the activity in an
allocated space in the approach with CSI, and experiments
with groups larger than a dozen people have yet to be seen.
Furthermore, CSI is highly dependent on the placement of the
sensors, and change in the layout of the space could require
re-fitting the data.

Wi-Fi probe requests came into spotlight with the work of
J. Scheuner et al. and E. Vattapparamban et al. Probe requests
are much less sensitive to alterations in the environment,
expanding the coverage as a single sensor, equipped with a
high-gain antenna, could capture signals within a large radius.
Though probe requests cannot capture detailed activities and
body gestures as CSI could, they are perfectly adequate for
gathering crowd sizes. Processing probe requests is less stren-
uous compared to that of CSI as the unique MAC addresses
can be aggregated to the sum of people.

B. Multivariate Time Series Forecasting

Many sequence DNN (Deep Neural Networks) models
strive to tackle the challenge of time series forecasting, in
which the input of a model is a time-dependent sequence and
so is the output. Although NLP (Natural Language Processing)
models enjoyed massive success in recent years, there have
been incremental advancements in multivariate time series
forecasting even though the two problems share many com-
monalities.

1) Recurrent Neural Network

Fig. 2: Typical RNN Cell [15]

RNN is apt to process sequential data like
(
x1, . . . , xn

)
where t is the time step index and xt ∈ Rd. A typical RNN
cell, whose structure once unrolled resembles that of lists and
sequences, is shown in Figure 2. The RNN cell takes xt as
an input, and the output ht is calculated from the input xt
and the previous hidden state. The cell runs the same function
recurrently for every element in the list, allowing information
from previous time steps to pass through.

2) Long-short Term Memory

Fig. 3: LSTM Cell [15]

When training recurrently over long sequences, typical RNN
experiences gradient explosion and gradient vanishing, which
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LSTM mediates [6]. In contrast to a typical RNN cell, an
LSTM cell has three cell gates that allow it to selectively add
and remove information from the cell state, as illustrated in
Figure 3.

Nonetheless, while addressing some deficiencies on long-
range dependencies, LSTM still has its limitations. The hidden
state of a time step strongly influences only the following
few time steps, resulting in a challenge to capture temporal
dependencies, which is critical in time series forecasting. For
instance, the crowd count from 24 hours ago might be just as
indicative of as that of the last hour. Due to the nature of LSTM
as a Recurrent Neural Network, data is passed in sequentially,
and the next time step could only be calculated from the hidden
state of the previous one, rendering parallelism an impossible
task.

3) Transformer
Breaking these constraints of LSTM, Ashish Vaswani et

al. proposed a new architecture in deep learning, namely
Transformer, which features an encoder-decoder structure and
two attention mechanisms: self-attention and encoder-decoder
attention. Since it processes all time steps in parallel, Trans-
former outperforms LSTM in long-range context dependencies
while drastically improving the efficiency.

III. SENSOR NETWORK ARCHITECTURE

Fig. 4: System Architecture

As illustrated in Figure 4, the infrastructure of the system
includes three main components: the IoT sensor network,
an API server that collects and processes the data, and a
Transformer-based neural network that generates forecasts of
upcoming traffic dynamics.

A. Crowd Counting with IoT Sensors

1) Preliminaries: Wi-Fi Probe Request
Under the IEEE 802.11n protocol, Wi-Fi devices send out

probe requests to gather information on available wireless
networks nearby.[5] Probe requests are broadcast at various

Fig. 5: The Wi-Fi Probe Request Frame [5]

frequencies that are dependent on the operating system of the
device. On average, smartphones send out 55 probe requests
per minute and 2000 per hour in an experimental study
conducted in 2015 [4]. As most people carry at least one Wi-
Fi enabled device with them when traveling, probe requests
become a reliable metric of crowd density.

802.11n Wi-Fi operates on 2.4GHz with 14 channels avail-
able. [5] We set the wireless module that is part of our
sensor to monitor mode, and our software processes the probe
requests locally. Due to limitations of available hardware, the
wireless module can only listen to one channel at a time, so we
iterate all of the channels on a Weighted Round Robin basis,
in which process the most active channels are prioritized. We
extract the MAC address and signal strength from the probe
requests captured, whose structure is shown in Figure 5, and
aggregated the data from our sensors to a server periodically.
To exclude stationary Wi-Fi devices located near the sensor,
devices, identifiable by the MAC addresses, that are always
present over an extended period of time will be excluded from
calculations.

2) Hardware Architecture

Fig. 6: A Sensor Node Prototype

The sensor network consists of an array of nodes, each has
capabilities to monitor the traffic in the region it is installed. To
ensure expandability and robustness, the sensor runs on a net-
work operating system equipped with a run-time environment,
such as Linux distributions, for our self-developed software.
To monitor nearby Wi-Fi traffic, the sensor interacts with a
Wi-Fi module that supports 802.11n monitor mode. [19].

We select Raspberry Pi Model 3 A+ [2] as the micropro-
cessor of the sensor node, as it features a 64-bit SoC (System
on a Chip) processor operating at 1.4GHz, 512 megabytes
of RAM, and built-in Wi-Fi to report data to the server.
Enclosed in a custom 3D-printed case, the Raspberry Pi
communicates with an external Wi-Fi module through standard
USB protocol. The Wi-Fi module is connected to a high-gain
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omnidirectional antenna to increase the effective range. An
optional cellular module can be connected to the Raspberry
Pi to allow communication in the absence of Wi-Fi coverage.

3) Software Architecture
The sensor node software captures probe requests from the

external antenna and upload the data to the server through
either Wi-Fi or cellular network. Kali Linux[7] is selected as
the operating system, for it provides driver support for packet
capturing.

Written in Java, the sensor node software listens exclusively
to probe requests and demonstrated predictable behavior and
performance across different devices and environments. The
sensor nodes communicate with the API server through two
secured channels: MQTT over UDP and HTTP 1.2 with
TLS encryption. The sensor defaults to using TLS as their
means of communication with the server and falls back to
MQTT, a lightweight publish-subscribe protocol suitable for
transmission over less ideal network environments, reporting
its operational status as well as locally hashed mac addresses.

B. Data Collection and Processing

The API server is run on a cloud server to collect and
process the data it receives from the sensor network. Inte-
grated with a web user interface, the API server is written
in php using the web framework Laravel [8] to allow easy
configuration for administrators. MySQL is selected as the
backend to provide high-performance database service to the
API server. The API server computes crowd counts and feeds
the data to our neural network, detailed in Section IV, and
records the data into the database. The mobile application also
receives information from the API server and provides real-
time information on crowdedness and forecasts to the general
public.

IV. MOBILITY FORECASTING WITH
TRANSFORMER-BASED MODEL

A. Data Pre-processing

Raw sensor data is processed per the following procedures.
1) Probe requests with a locally administered MAC address

are removed as smart devices randomize their MAC
addresses to protect the privacy of their users.

2) Devices located outside of a bounding box is eliminated.
The distance of a device from the sensor is calculated
using the signal strength of the probe request using Free-
Space Path Loss, defined as

FSPL(dB) = 20log10(d) + 20log10(f) + C (1)

where d is distance and f is frequency.
3) Stationary devices that are not smartphones, laptops,

or other portable electronics, are filtered out based
on extracted manufacturer information from the MAC
address.

4) The raw data entries are grouped by an interval of
5 minutes and aggregated into crowd sizes based on
unique MAC addresses, effectively the number of Wi-
Fi devices, during that interval. As the percentage of

people who do not carry smartphones does not fluctuate
frequently, the crowd count is extrapolated by a scalar
to approximate the actual number of people present.

5) Finally, we export Data Sets 1 and 2 listed in Table I
from our database as input of our model using a sliding
window of a fixed look-back period and a forecast
horizon.

B. Transformer-Based Model

Fig. 7: The Original Transformer Architecture [16]

Illustrated in Figure 8, our Transformer-based crowd fore-
casting model retains the origin encoder-decoder design in Fig-
ure 7. Originally designed for Natural Language Processing,
we tailor the Transformer model to fit our specific use case.

1) Encoder
The encoder accepts a sequence

(
xt−(L−1), . . . , xt

)
where

xt ∈ Rd, in which d is the number of features and L represents
the look-back period on historic data. The periodicity of
the sequence is extracted in the One hot encoding before
the sequence is fed into a trainable Embedding Layer that
formulates a representation of the time step in a global scope.
Positional encoding is added for the Transformer cell to learn
temporal features and dependencies within the sequence. A
typical Transformer encoder block then accepts the processed
sequence and passes it through multi-headed self-attention and
a feed-forward network to the decoder block.

2) Decoder
Similarly, the decoding side accepts a sequence(
xt, . . . , xt+(H−1)

)
where xt ∈ Rd, in which H represents

the forecast horizon. The sequence serves as input for the
decoder and is processed the same as it was for the encoder.
The decoder has a similar design to the encoder with two
attention mechanisms – self-attention and encoder-decoder
attention. The self-attention mechanism works similarly to
that of the encoder, and the encoder-decoder attention block
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Fig. 8: Our Transformer-Based Model

takes the concatenated input from both the encoder block and
the decoder input. The decoder runs on an auto-regressive
basis, and, for time step t, the decoder takes the generated
output of yt−1 as input.

C. Sequence Order and Periodicity
1) Sequence-wide Positional Encoding
The attention mechanism considers each time step as equal

if without positional encoding, and the time-dependent infor-
mation would be lost as a result. In Attention is All You
Need, Ashish Vaswani et al. ensured that the network captures
the time dependency by adding alternating sine and cosine
functions to the input of both the encoder and the decoder.
The period of the sine and cosine function increases from 2π
to 10000pi as the dimension increases, allowing the network
to study the position of a time step across the whole sequence,
as shown in equations 2 and 3 [16].

PE(pos,2i) = sin(pos/100002i/dmodel) (2)

PE(pos,2i+i) = cos(pos/100002i/dmodel) (3)

2) Capturing Periodicity with One hot Encoding
The Transformer model can keep track of long-range con-

text dependency but is not attentive to the periodicity of the
input sequence. For many cases in crowd forecasting, crowd
mobility has explicit patterns in regard to the time of day, the
day of the week, and whether its a weekday or a weekend.
More variables, including class schedule and weather informa-
tion, could be passed in as a state or condition that is present
periodically. Thus, we add a layer of one hot encoding on top
of the embedding layer to extract this periodicity.

V. EXPERIMENTS AND RESULTS

In this section, we conduct experiments to test our model
and evaluate its performance by comparing to LSTM models.

A. Data Sets

We evaluate our model based on four real-world data sets,
including two self-collected sets on the campus of Phillips
Exeter Academy and two public sets collected in Belgium in
the research of Utkarsh Singh et al., as described in Table
I. With maps available in Appendix I, Data Set 1 and 2
corresponds to sensor locations S1 and S4 respectively in
Figure 14. Data Set 3 corresponds to sensor locations S14
to S18 in Figure 15; and Data Set 4 corresponds to sensor
locations S1 to S7 in Figure 16.[13]

It is worth noting the scarcity of publicly available data sets
in Wi-Fi crowd monitoring, as Data Sets 3 and 4 collected in
the research of Utkarsh Singh et al. are the only ones available
to the best of our knowledge.

Splitting our data into training and testing sets of different
proportionality based on test scenarios, we first review Data
Sets 1 and 2 in a campus setting and then Data Sets 3
and 4 in a city setting. For the evaluation of Data Sets 3
to 4, we replicate the input sequence length and horizon of
[13] to ensure comparability, though our model is capable
of predicting with much longer input sequences and horizons
larger than that of the experiments of Utkarsh Singh et al.

B. Experimental Details

1) Training and Hyperparameters
While training with ADAM as our optimizer, teacher-

forcing is utilized so that the ground truth, rather than the
generated output from the last time step, is passed as input
to the decoder to improve training speed. We decided against
using dropout layers, as it may hinder the performance of our
model on relatively small data sets. Instead, we employ kernel
regularization to prevent over-fitting.
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TABLE I: Data Sets Utilized in Experiment

Data Set Ref Location Setting

Data Set 1 Self-collected Downer Family Fitness Center,
Phillips Exeter Academy Campus

Data Set 2 Self-collected Passage,
Phillips Exeter Academy Campus

Data Set 3 [13] La Bourse de Bruxelles,
Bruxelles, Belgium Urban

Data Set 4 [13] Sainte-Catherine,
Bruxelles, Belgium Urban

Through grid search and 5-fold cross validation, we fi-
nalized our model with 4 attention heads and 6 attention
layers. Look-ahead masking is implemented in the decoder
self-attention block to prevent the decoder fitting to future
time steps. That is, the attention relevance scores are set to
zero for future time steps, which restricts the decoder from
reading future information to make predictions.

To prevent our model from making predictions solely on
based on patterns manifested in the one hot encoding, we
apply to all attention layers L1 regularization, expressed as

L1 = (wx+ b− y)2 + λ|w| (4)

where λ is 0.0001, and L2 regularization,

L2 = (wx+ b− y)2 + λw2 (5)

where λ is 0.001, adding additional penalty to the loss
function.

2) Metrics
To evaluate the performance of our crowd forecasting

model, we select MSE as our loss function during training,
defined as

MSE =

H−1∑
i=0

(ŷi − yi)2

H
(6)

where ŷ is the ground truth and yi is the predicted crowd size,
and evaluate our model performance using RMSE:

RMSE =

√√√√H−1∑
i=0

(ŷi − yi)2
H

(7)

C. Forecasting with Self-Collected Data Sets

We put our model to test first in a campus setting. Using
Data Sets 1 and 2, we observe whether the model could capture
periodic patterns that are explicit due to a fixed class schedule
and if the model is capable of discerning different patterns
on weekdays and weekends. From a pragmatic standpoint, we
choose 4 hours as both the look-back length and the forecast
horizon as 4 hours is a sensible duration for administrators and
the public to make informed decisions. For both data sets, the
train test split is set to 0.8 while ensuring that the model has
studied at least one day of the weekend so that it is able to
recognize the different patterns. The data sets are not shuffled
and are, rather, split by date.

D. Forecasting with Public Data Sets

For Data Set 3 and 4, we train the model on data of the
first-three days, and test the model on five days’ worth of data.

(a) Crowd Count

(b) RMSE by Testing Sample Index

Fig. 9: Data Set 1 Results

E. Results

In this section, we examine the results from our own data
sets, and then compare our model to existing models proposed
in the recent research, Crowd forecasting based on WiFi
sensors and LSTM neural networks [13].

F. Self-Collected Data Sets

Aiming to examine the accuracy of our model in a campus
setting, we first look at the results of Data Sets 1 and 2. Figure
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(a) Crowd Count

(b) RMSE by Testing Sample Index

Fig. 10: Data Set 2: Ground Truth and Prediction

TABLE II: RMSE Comparison with Existing Models in [13]

Model Data Set 3 Data Set 4 Percentage
Improvement

RW [13] 229.40 274.46 -
LSTM [13] 158.49 214.30 26.01

BiLSTM [13] 146.59 223.17 26.61
EDLSTM [13] 149.64 197.44 31.12

CNNLSTM [13] 150.06 206.39 29.26
ConvLSTM [13] 142.68 190.18 33.94

Our Model 96.93 130.24 54.91

9a and 10a represent the ground truth for the crowd count,
respectively, for the two data sets. Figure 9b and 10b represent
the model’s RMSE across the testing data sets. A periodic
pattern surfaces when we look at the similarities between each
weekday. However, though not clearly discernible in 9a, the
peaks do not overlap due to a different slightly schedules of
every day. Manifested in Figure 10a, a drastic increase of
traffic exists on specific days of the week. When evaluating the
performance of the model, it is imperative to contextualize the
RMSE value in the setting represented. When compared to the
level of magnitude of the traffic, the RMSE is well within a
reasonable range due to the uncertain nature of crowd mobility.
Our model is able to maintain a relatively low RMSE over the
forecast horizon of four hours, and the results demonstrate its
ability to capture mobility patterns over a long time span.

(a) Overall RMSE by Testing Sample Index

(b) RMSE during Peak Traffic (10:30 AM to 4:30 PM)

Fig. 11: Data Set 3

1) Comparison with Existing Models
Utkarsh Singh et al. covered five different LSTM-based

networks, including the Original LSTM, Bidirectional LSTM,
Encoder-Decoder LSTM, Convolutional Neural Netowrk
LSTM, and Convolutional LSTM, denoted as LSTM, BiL-
STM, EDLSTM, CNNLSTN, ConvLSTM respectively in Ta-
ble II, and the authors included a RW (random walk) model
as a baseline [13]. We referenced their data in Table II to
compare with our results.

Prior research generally confirm that LSTM grapples with
long-range context dependencies, and we are unaware of the
performance of LSTM models over longer input sequences
presented in the work of Utkarsh Singh et al., as their input is
limited crowd counts in the past 60 minutes and their forecast
horizon is set to 30 minutes, a relatively short period of time
for some practical use cases.

To ensure comparability, we applied the exact same training
data, look-back period, and forecast horizon. For Data Set 3
our model is trained on three days of data – Dec 25, Dec 26,
and Dec 27 – and tested on a set of five days; similarly, for
Data Set 4, our model is trained on data from Dec 01, Dec
10, and Dec 13, and evaluated on a testing set of five days as
well.

As shown in Table II, our model yields the best result across
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(a) Overall RMSE by Testing Sample Index

(b) RMSE during Peak Traffic (4 PM to 8 PM)

Fig. 12: Data Set 4

the board, observing the exact same training and testing setup.
We significantly lowered RMSE for these two data sets, and
leads the next best-performing model, namely ConvLSTM,
by a 20.97% margin compared to baseline. These results
further demonstrate that our model is versatile going from
a campus setting with the maximum amount of traffic being
around 100 people to busy urban centers with thousands of
people. For forecast horizon specific comparisons, please refer
to Appendices C and D.

VI. CONCLUSION

In this paper, we have developed a full-fledged crowd
tracking sensor network and offered a Transformer-based ap-
proach to generating upcoming crowd mobility forecasts. We
encoded periodicity into the model using one hot to express
the periodic patterns of our data. Tested on self-collected
and public data sets, our model has proven its capabilities
to navigates in different settings, including college campuses
and busy urban centers, for it captures long-range context
dependencies in historic data, increasing the forecast horizon
and accuracy by a substantial margin. Comparing our model
to existing models in a 2020 study [13], we lowered RMSE by
54.91% compared to the baseline model in Table II, leading
the second best performer, ConvLSTM by a wide margin of
20.97%.

With our mobile application shown in Appendix A, the
sensor network is now in phased deployment at Phillips Exeter
Academy.

A. Future Prospects

In our future efforts, we will explore the integration of
Transformer and Graph Convolutional Network that captures
the crowd mobility across different locations, which we were
not able to explore due to limitations of available data sets.
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APPENDIX A
GUI AND MOBILE APPLICATION

Fig. 13: Mobile Application
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APPENDIX B
SENSOR LOCATIONS

Fig. 14: Sensor Locations of Data Set 1 and 2
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Fig. 15: Sensor locations of Data Set 3 [5]
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Fig. 16: Sensor locations of Data Set 4 [5]
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APPENDIX C
DATA SET 3 RESULTS
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APPENDIX D
DATA SET 4 RESULTS
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